Visualization of microarray gene expression data
نویسندگان
چکیده
منابع مشابه
Visualization of microarray gene expression data
Microarray gene expression data is used in various biological and medical investigations. Processing of gene expression data requires algorithms in data mining, process automation and knowledge discovery. Available data mining algorithms exploits various visualization techniques. Here, we describe the merits and demerits of various visualization parameters used in gene expression analysis.
متن کاملData Analysis: Microarray Gene Expression
Most genomic data within the NextBio platform are generated using the Affymetrix platform (Figure 2). Ideally, all Affymetrix data would be imported as CEL files, and processed using the same normalization method, such as Robust Multi-array Average (RMA)1; however, for pre-existing experiments, this is often impossible. In this case, probeset-level Microarray Suite version 5 (MAS5) intensities2...
متن کاملMining Microarray Gene Expression Data
DNA microarray technology provides biologists with the ability to measure the expression levels of thousands of genes in a single experiment. Many initial experiments suggest that genes of similar function yield similar expression patterns in microarray hybridization experiments. Hence it makes possible to distinguish genes with different functions by analyzing gene data generated from microarr...
متن کاملData Analysis: Microarray Gene Expression
Most genomic data within the NextBio platform are generated using the Affymetrix platform (Figure 2). Ideally, all Affymetrix data would be imported as CEL files, and processed using the same normalization method, such as Robust Multi-array Average (RMA)1; however, for pre-existing experiments, this is often impossible. In this case, probeset-level Microarray Suite version 5 (MAS5) intensities2...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformation
سال: 2006
ISSN: 0973-8894,0973-2063
DOI: 10.6026/97320630001141